
© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any
electronic or mechanical means, including information storage and retrieval systems,
without the prior written permission from the IB. Additionally, the license tied with this
product prohibits use of any selected files or extracts from this product. Use by third
parties, including but not limited to publishers, private teachers, tutoring or study services,
preparatory schools, vendors operating curriculum mapping services or teacher resource
digital platforms and app developers, whether fee-covered or not, is prohibited and is a
criminal offense.

More information on how to request written permission in the form of a license can be
obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-
license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque
forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des
systèmes de stockage et de récupération d’informations, sans l’autorisation écrite
préalable de l’IB. De plus, la licence associée à ce produit interdit toute utilisation de tout
fichier ou extrait sélectionné dans ce produit. L’utilisation par des tiers, y compris, sans
toutefois s’y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou
d’aide aux études, des établissements de préparation à l’enseignement supérieur, des
fournisseurs de services de planification des programmes d’études, des gestionnaires de
plateformes pédagogiques en ligne, et des développeurs d’applications, moyennant
paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d’informations sur la procédure à suivre pour obtenir une autorisation écrite
sous la forme d’une licence, rendez-vous à l’adresse https://ibo.org/become-an-ib-school/
ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto
de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de
almacenamiento y recuperación de información, sin la previa autorización por escrito del
IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o
fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye,
a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o
ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y
entidades que presten servicios de planificación curricular u ofrezcan recursos para
docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido
y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por
escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/
applying-for-a-license/.

© International Baccalaureate Organization 20208 pages

For use in November 2021, May 2022 and November 2022

Computer science

Case study: Genetic algorithms

Instructions to candidates

 y Case study booklet required for higher level paper 3.

– 2 –

Introduction

It is 19:00 on Saturday evening and Lotte is packing her things before she sets off for a motorcycle

tour of Vlakland on Monday morning. She has identified 20 cities she wants to visit before returning
home. Her friend, Fenna, a twelfth-grade computer science student, asks what route she plans to take.

“Actually, I was hoping you could help me with that,” Lotte replies. “I’ve found a table of the distances
between the cities I want to visit,” she explains (see Figure 1). “I was wondering if you could write a
short computer program to test all the possible routes?”

Figure 1: Distances in kilometres (km) between the cities Lotte wants to visit

X A B C D E F G H I J K L M N O P Q R S T

X 0 94 76 141 91 60 120145 91 74 90 55 145108 41 49 33 151 69 111 24

A 94 0 156231 64 93 108 68 37 150130 57 233 26 62 140 61 229120 57 109

B 76 156 0 80 167133124216137114154100141161116 37 100169 49 185 84

C 141231 80 0 229185201286216139192178113239182 92 171155128251137

D 91 64 167229 0 49 163 65 96 114 76 93 200 91 51 139 72 185148 26 92

E 60 93 133185 49 0 165115112 65 39 91 151117 39 99 61 139128 75 49

F 120108124201163165 0 173 71 194203 74 254 90 127136104269 75 163144

G 145 68 216286 65 115173 0 103179139123265 83 104194116250186 39 152

H 91 37 137216 96 112 71 103 0 160151 39 236 25 75 130 61 239 95 93 112

I 74 150114139114 65 194179160 0 54 127 86 171 89 77 99 80 134140 50

J 90 130154192 76 39 203139151 54 0 129133155 78 117 99 111159101 71

K 55 57 100178 93 91 74 123 39 127129 0 199 61 53 91 30 206 63 101 78

L 145233141113200151254265236 86 133199 0 251171118176 46 182226125

M 108 26 161239 91 117 90 83 25 171155 61 251 0 83 151 75 251119 81 127

N 41 62 116182 51 39 127104 75 89 78 53 171 83 0 90 24 168 99 69 49

O 49 140 37 92 139 99 136194130 77 117 91 118151 90 0 80 139 65 159 50

P 33 61 100171 72 61 104116 61 99 99 30 176 75 24 80 0 179 76 86 52

Q 151229169155185139269250239 80 111206 46 251168139179 0 202211128

R 69 120 49 128148128 75 186 95 134159 63 182119 99 65 76 202 0 161 90

S 111 57 185251 26 75 163 39 93 140101101226 81 69 159 86 211161 0 115

T 24 109 84 137 92 49 144152112 50 71 78 125127 49 50 52 128 90 115 0

Note: X is Lotte’s house

– 3 –

Turn over

Figure 2: Computer-generated image using the data in Figure 1

to show the location of the cities Lotte wants to visit

0 5025 100 125 175 22575 150 200 250

175

150

125

100

75

50

25

0

C

L

Q

B
R

F

O
K H

M

A

P

N

X

T

I

J

E

D S
G

Kilometres (km)

K
ilo

m
e

tr
e

s
 (

k
m

)

Fenna frowns. She recognizes Lotte’s situation as an example of a combinatorial optimization problem

known as the travelling salesman problem. In this problem, the number of possible solutions grows
extremely rapidly with input size so that even quite small problems, such as visiting 20 different cities
by the shortest possible route, become computationally intractable.

“Let’s say your starting point is X and the cities you want to visit are labelled A, B, C, etc,” explains Fenna.
“If you only visit one city, there is only one choice, which is X to A and back again; we can write this
as XAX. If you have two cities, then you have XABX or XBAX. If there are three cities, then you have

six choices:

XABCX XACBX XBACX XBCAX XCABX XCBAX”

“But XABX and XBAX are the same route, just in different directions!” observes Lotte.

“That’s correct,” says Fenna. “The number of permutations is always halved, because each route occurs
twice, once in each of the two directions. The problem is this: every time we add a new city, the new
city can be inserted at any point in all of the current possible routes. Adding the Nth city multiplies the

number of existing solutions by N.”

“We don’t have to do it by hand though!” laughs Lotte. “We have a computer!”

“Well, yes,” Fenna agrees, “but with 20 locations we have permutations.” She opens the calculator
app on her phone. “That’s 1 216 451 004 088 320 000”—Fenna busily taps her phone and then finally
looks up—“it would still take more than 30 000 years to test them all.”

The travelling salesman problem

This involves starting at one city and visiting every other city before returning to the starting point. Each

city is connected to every other by a direct route, all cities must be visited once, and no city can be

visited more than once. Any sequence of cities that obeys these rules is a valid tour. The aim of the

problem in its strictest version is to find the shortest possible tour.

– 4 –

There are a variety of approaches to the travelling salesman problem, many of which require considerable
mathematical training, but it is currently not known whether an algorithm exists that will find the optimal
solution in a reasonable amount of time. There are, however, heuristics that have had some success in

finding good solutions quickly enough to make them a practical approach, and it is one of these that is
the subject of this case study.

Genetic algorithms

Genetic algorithms mimic the process of natural selection in an attempt to evolve solutions to otherwise
computationally intractable problems.

Implementation details vary considerably, but a standard genetic algorithm includes the following steps:

Initialize

While true

 Evaluate

 If (termination condition) break

 Select

 Crossover

 Mutate

Output best result

The rest of this section examines some implementation options when applying genetic algorithms to the
travelling salesman problem.

Initialization

This involves generating a random population of individual tours, each of which is a possible solution to
the problem. In the travelling salesman problem, with a starting point of X, one possible tour is:

F J G I L C M E S Q P H T B K N R D O A

Evaluation

The algorithm determines if the termination condition has been met and, if so, outputs the best solution

found so far and terminates. If not, it determines the fitness of each individual tour. In Lotte’s problem,
this involves calculating the total distance that Lotte would travel using that tour.

A fitness function is used to assign a fitness value to each tour. Individual tours are sorted according to
their fitness. The highest fitness value is assigned to the shortest tour.

Selection

A sample of tours is taken from the population and placed in the mating pool. This can be done in a

number of different ways but, in general, fitter tours have a higher probability of being selected to enter
the mating pool. Four common selection strategies are:

 y roulette wheel selection

 y stochastic universal sampling

 y tournament selection

 y truncation selection.

A further design consideration in selection is to decide whether to ensure that the best solution(s) are
carried to the next generation with certainty. This is known as elitism.

– 5 –

Turn over

Crossover

In biology, crossover is the term given to the mechanism by which the chromosomes of a new individual
tour are created from a combination of its parents’ chromosomes.

Figure 3: Types of crossover

One-point crossover Two-point crossover

In the travelling salesman problem, simple one- or two-point crossover (Figure 3) presents a problem

because cities can be repeated or omitted in the offspring, leading to an invalid tour that does not visit

each city as required.

Consider the following crossover (Figure 4) between two valid tours of a ten-city travelling salesman
problem, in which the parents, P1 and P2, combine using one-point crossover to make a new
individual tour, F1.

Figure 4: An example of crossover

P1 B F C A D H G I E J

P2 G J C D I A E B F H

F1 B F C A D A E B F H

The resulting offspring, F1, is not a valid tour because it repeats cities A, B and F and omits cities G, I

and J. The same problem occurs with a simple two-point crossover. A number of different crossover
mechanisms exist, each trying to preserve the characteristics of the parents as much as possible.

Having decided which individual tours will make up the mating pool, it is necessary to decide how they
should combine to produce offspring. Three methods are presented:

 y Partially mapped crossover (PMX)
 y Order crossover (OX)
 y Cycle crossover (CX)

– 6 –

Partially mapped crossover (PMX)

Choose a random sub-sequence from P1 and copy it to F1:

P1: J B F C A D H G I E

P2: F A G D H C E B J I

F1: * * F C A D H * * *

Set up elementwise mappings between P1 and P2 for cities in P1 that are not already in F1. If the

corresponding city C from P2 is already in F1 then resume mapping from the location of C in P1,

repeating until a city not in F1 is found:

J ↔ G B ↔ E G ↔ B I ↔ J E ↔ I

Add the remaining cities from P1 to F1 and change them according to the mappings:

P1: J B F C A D H G I E

P2: F A G D H C E B J I

F1: * * F C A D H * * *
 ↓ ↓ ↓ ↓ ↓
F1: J B F C A D H G I E

 ↓ ↓ ↓ ↓ ↓
F1: G E F C A D H B J I

Order crossover (OX)

Choose a sub-sequence from one parent and preserve the relative order of the remaining cities from
the other.

Take a random sub-sequence S from P1 and copy it to F1. Starting with the empty element just after
S in F1, copy all cities that are not already in F1 from P2 in the order they appear in P2.

P1: J B F C A D H G I E

P2: F A G D H C E B J I

F1: * B F C A D * * * *
 H B F C A D E J I G

Cycle crossover (CX)

In F1, every city maintains the position it had in at least one of its parents.

P1: J B F C A D H G I E

P2: F A G D H C E B J I

Choose the first city from P1 and copy it to F1. Check the corresponding city in P2 (here, city F) and

copy it to F1, in the same position it occurs in P1. Repeat.

F1: J B F * A * H G I E

When you encounter a city that is already in F1 the cycle is complete. Now fill in the remaining cities
from P2.

F1: J B F D A C H G I E

– 7 –

Turn over

Mutation

In biology, mutation refers to accidental errors in the copying of genetic information from one generation

to the next. In a genetic algorithm, mutations are deliberately introduced in each new offspring according
to the mutation rate.

Discussion

The advantages of genetic algorithms are thought to be their ability to simultaneously sample vast fitness
landscapes while escaping the local extrema that might trap more traditional hill-climbing approaches.

Successful implementations of genetic algorithms strike a natural balance between exploration and

exploitation, and techniques such as simulated annealing can fine-tune that balance as the algorithm
progresses towards convergence. More recent research has focused on specifically rewarding novelty

as a means of encouraging algorithms to explore remote regions of the problem space. Other design

choices, such as initial parameters, selection strategy and crossover operator, all influence the
performance of the algorithm, although it is generally not possible to predict their effects, so a

trial-and-error approach is usually adopted.

Challenges faced

There are a number of challenges associated with genetic algorithms. These include:
 y understanding the role of convergence in genetic algorithms and the factors affecting convergence

 y evaluating the use and implementation of roulette wheel selection, tournament selection and
truncation selection strategies used within genetic algorithms

 y discussing the different solutions to address the failure of simple crossover strategies for the travelling

salesman problem. In particular:

 ◦ why they are necessary
 ◦ how they are applied
 ◦ how they preserve the parental traits
 ◦ what other possible methods are available

 y understanding the advantages and disadvantages of genetic algorithms with respect to other
approaches to the travelling salesman problem and combinatorial optimization problems in general.

Candidates are not required to know the implementation details of other approaches.

– 8 –

Additional terminology

Brute force approach

Combinatorial optimization
Computational intractability

Convergence

Crossover / crossover operator

Elitism

Exploration vs exploitation
Fitness / fitness function / fitness landscape
Heuristic

Hill climbing

Initialization parameters
Local extrema
Mating pool

Mutation / mutation rate

Novelty search

Offspring

Optimization
Population

Premature convergence

Problem space

Ranking

Roulette wheel selection
Selection strategy

Simulated annealing

Stochastic universal sampling

Termination condition

Tour

Tournament selection

Truncation selection

References:

© International Baccalaureate Organization 2021

